Gewitter treten in ganz unterschiedlichen Erscheinungsformen auf. Im heutigen Thema des Tages wird die Superzelle vorgestellt, ein rotierendes "Monster" mit erheblichem Zerstörungspotential.
Gewitter können große Schäden verursachen und für Menschen im Freien sogar lebensgefährlich werden. Extreme Unwetter im Mittelmeerraum vor ein paar Tagen zeigten dies eindrucksvoll (siehe Thema des Tages vom 11. Juli). Besonders gefährlich ist die sogenannte "Superzelle", eine rotierende und langlebige Gewitterwolke.
Superzellen sind vielen vor allem aus dem mittleren Westen der USA bekannt. Jährlich zieht es hunderte Gewitterjäger (Stormchaser) in diese Region, sogar aus Deutschland, um die majestätisch anmutenden Gewitter zu verfolgen und zu fotografieren. Durch die meteorologischen Voraussetzungen und das flache Terrain können sich Superzellen dort ungehindert entwickeln und ihre größte Stärke entfalten. Sie sind durch ihre zerstörerischen Tornados bekannt, die dort jedes Jahr über das Land ziehen und alles, was ihnen in die Quere kommt, dem Erdboden gleich machen.
Was viele nicht wissen, auch bei uns in Deutschland sind Superzellen gar nicht so selten und kommen jährlich mehrfach vor. Die in diesem Jahr bisher wohl spektakulärste Superzelle war das Hagelunwetter, das am 10. Juni im Allgäu entstand und auf seinem Weg nach Nordosten vor allem im Raum Ammersee und im Münchner Norden Hagelbrocken von 4 bis 8 cm Durchmesser produzierte und sich erst im Bayrischen Wald wieder auflöste (siehe Thema des Tages vom 11. Juni). Am 28. Juli 2013 verursachte 8 cm großer Hagel einer Superzelle rund um Reutlingen mit 2,8 Mrd. Euro den bisher größten Hagelschaden der Geschichte Deutschlands und mehrere Hundert Menschen wurden verletzt. Nur ein paar Tage später, am 8. August, fand man ebenfalls bei Reutlingen mit 14 cm den größten Hagelbrocken Deutschlands. Auch beim Münchner Hagelunwetter vom 12. Juli 1984 handelte es sich um eine Superzelle. Damals kamen über der Millionenstadt bis zu 9,5 cm große und 300 g schwere Hagelgeschosse vom Himmel!
Eine detaillierte Beschreibung der komplexen Luftströmungen in einer Superzelle (Abb. 1) würde an dieser Stelle den Rahmen sprengen, sodass nur die grundlegenden Merkmale erläutert werden. Die markanteste Eigenschaft der Superzelle ist ihr rotierender Aufwindschlauch (Updraft). Wie bereits im Thema des Tages vom 6. Juli erklärt wurde, entscheidet vor allem die Stärke der vertikalen Windscherung (Zunahme der Windgeschwindigkeit und Änderung der Windrichtung mit der Höhe), welche Gewitterform sich bildet. Superzellen entstehen in einer Region, in der eine hochreichende und starke Windscherung vorherrscht und bodennah Warmluft einfließt. Bei uns in Deutschland sind diese Voraussetzungen beispielsweise an der Vorderseite eines Höhentiefs mit Zentrum über Westeuropa gegeben. Dabei erreicht uns in tieferen Luftschichten feuchte subtropische Warmluft, also eine sehr energiereiche Luftmasse (hohe CAPE), und der Wind erfährt eine deutliche Rechtsdrehung mit der Höhe. Durch die starke Windzunahme in der unteren Atmosphäre beginnt die Luft horizontal zu rotieren. Der Updraft (rote Pfeile, Abb. 1+2) kippt nun den rotierenden Wirbel in die Senkrechte und verstärkt ihn weiter. Durch die Rechtsdrehung des Winds entsteht so ein gegen den Uhrzeigersinn rotierender Aufwindschlauch mit einem Durchmesser von zwei bis zehn Kilometern, die sogenannte "Mesozyklone". Sie ist der eigentliche Motor der Superzelle. Durch die aufsteigende Luft erzeugt sie am Boden einen Unterdruck (kleinräumiges Tief), wodurch beständig Warmluft in die Gewitterwolke gesaugt werden und aufsteigen kann. Man erkennt diesen Vorgang oft an der sogenannten "Wallcloud", einer Absenkung der Wolkenbasis (Abb. 2+4). Die Scherung sorgt zudem dafür, dass die ausfließende Kaltluft des Downdrafts (hellblaue Pfeile, Abb. 1+3) hinter der in die Superzelle aufsteigenden Warmluft bleibt (Böenlinie in Abb. 1). Somit kann die Superzelle kontinuierlich mit der energiereichen Warmluft gefüttert werden. Durch die Langlebigkeit und die massive Power des rotierenden Updrafts können die Hagelkörner mehrfach angesaugt und in die Höhe katapultiert werden. So können sie zu immer größeren Brocken heranwachsen, bis sie aufgrund ihrer Schwere schließlich zu Boden fallen. Vor allem an der Böenlinie kann es extreme Fallböen (Downbursts) geben. Man erkennt sie an der sogenannten "Shelfcloud" (Abb. 3+4). Auch durch absinkende Kaltluft aus dem Amboss (dunkelblaue Pfeile, in Abb. 1) kann es am Boden zu Sturmböen kommen.
Zwar ist eine isolierte Superzelle streng genommen auch eine Einzelzelle, sie ist aber weitaus mächtiger und langlebiger als ihr nicht-rotierendes Pendant. Im unteren Teil hat das Gewitter oft eine Ausdehnung von 20 bis 50 Kilometern, der Cirrusschirm im oberen Bereich der Wolke kann sogar einen Durchmesser von über 100 Kilometern besitzen. Superzellen existieren meist über mehrere Stunden, im Extremfall sogar sechs bis zwölf Stunden. Daher können sie über hunderte von Kilometern ziehen und selbst ohne Tornados eine Schneise der Verwüstung hinterlassen, insbesondere durch extremen Hagelschlag. Die Rotation der Superzelle erklärt auch die Bildung von Tornados. Zudem erreichen die Fallböen teils Orkanstärke und verursachen erhebliche Schäden. So majestätisch schön sie für den Beobachter aus der Ferne wirken, so gefährlich und angsteinflößend sind sie also, wenn man von ihnen getroffen wird.
Dr. rer. nat. Markus Übel (Meteorologe)
Deutscher Wetterdienst
Vorhersage- und Beratungszentrale
Offenbach, den 14.07.2019
Copyright (c) Deutscher Wetterdienst